Geoid Interpolation Software

Technical Specification and
User’'s Guide

®Nip,n) ®N(p,n)
o AN i
A
Ay
®Nipn) + O N

Version 1.0.3.0
December 2011

r™ S INTERGOVERNMENTAL COMMITTEE
A ON SURVEYING AND MAPPING

Geoid Interpolation Technical Specification
AusGeoid Grid File (NTv2) Interpolation library and executables
December 2011

© Intergovernmental Committee on Surveying and Mapping (ICSM)
For queries and/or feedback relating to the AusGeoid grid file, please contact:

Nicholas Brown

Project Officer, National Geospatial Reference Systems

Geospatial & Earth Monitoring Division

Geoscience Australia

Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston, Canberra, 2601
nicholas.brown@ga.gov.au

For technical and software related matters, please contact:

Roger Fraser

Manager, Geodetic Survey

Office of Surveyor-General Victoria

Department of Sustainability and Environment
Level 17/570 Bourke St, Melbourne, Victoria, 3000
roger.fraser@dse.vic.gov.au

nicholas.brown@ga.gov.au
roger.fraser@dse.vic.gov.au

Contents

Contents
Preface.

1 Introduction

2 dnaGeoid Library

2.1 Data struct type declarations
2.2 Exported functions
2.3 Handling exceptions
2.4 Calling the exported functions
2.4.1 BiCubicTransformation
2.4.2 BiLinearTransformation
2.4.3 CreateGridlndex
2.4.4 CreateNTv2File
2.4.5 FileTransformation
24.6 GetByteOffset
2.4.7 ReportGridProperties
2.4.8 ReturnFileProgress
2.4.9 SetByteOffset
2.4.10 Version.

3 Command-line software: geoid

4 Graphical User Interface software: Geoidint
4.1 Interpolating geoid values for a single point
4.2 Interpolating geoid values for a file of points

5 File Format Specification

17

21
21
23

25

Preface

In 2009, the Intergovernmental Committee on Surveying and Mapping (ICSM) commissioned
the development and implementation of a new ellipsoid—geoid correction surface for Australia.
Known as AusGeoid09, this surface will enable users of Global Navigation Satellite Systems
(GNSS) to compute Australian Height Datum of 1971 (AHDT71) heights directly from ellipsoidal
heights.

To facilitate the conversion of ellipsoidal and orthometric heights for randomly located points,
AusGeoid09 has been implemented as a file of regularly spaced grid node values. In order to
interpolate the N values from the grid file in an efficient and standardised way, the National
Transformation version 2.0 (NTv2) format! has been adopted for structuring and storing the
AusGeoid09 grid node values. Whilst this format was specifically developed for interpolat-
ing grid values for two—dimensional coordinates, NTv2 is well suited to the problem of geoid
interpolation for the following reasons:

e Instantaneous interpolation of grid node values independent of grid file size

Support for user—defined grid shift intervals and grid shift units

Inclusion of multiple sub—grids having various grid shift intervals

Management of metadata relating to each sub—grid

Ability to manage and interpolate uncertainty at each grid node

Widely recongised and supported format amongst the geodetic community

In order to provide a consistent approach to N—value interpolation for the widest possible range
of user needs in a platform-independent way, a suite of geoid interpolation applications has been
developed. This document describes the use of these applications and provides the technical
specifications of the application programming interface (APT).

1Visit http://www.geod.nrcan.gc.ca/tools-outils/ntv2_e.php for information and technical specifica-
tions on the N'Tv2 file format.

http://www.geod.nrcan.gc.ca/tools-outils/ntv2_e.php

1 Introduction

This document describes the user guidelines and API for a suite of applications that can be
used for interpolating geoid—ellipsoidal (N) values and deflections of the vertical. The geoid
interpolation functionality relies on the use of the NTv2 file format.

Three software products are described:

dnaGeoid A standard C-+-+ product that can be compiled as a Windows dynamic link library
(DLL) or UNIX/Linux shared object (SO). dnaGeoid provides all the required functional-
ity for obtaining N values and deflections from user—supplied interpolants, and for creating
NTv2 grid files from legacy WINTER dat files.

dnaGeoid is primarily intended for software developers wishing to incorporate geoid inter-
polation functionality within existing applications. dnaGeoid can be called from applica-
tions written in C, C++, C#, VB6/VB.Net, FORTRAN or Java using the Java Native
Interface (JNI), and may be run on either Windows or UNIX/Linux platforms.

geoid A standard C++ product that can be compiled as a Windows or UNIX/Linux exe-
cutable. geoid provides a simple command-line interface for controlling the use of dnaGeoid
to perform geoid interpolation functions.

GeoidInt A Microsoft Windows 2000/XP /Vista executable that provides a simple Windows
interface for controlling the use of dnaGeoid to perform geoid interpolation functions.

Figure 1.1 illustrates the technical architecture of the suite of software applications. As shown
by Figure 1.1, platform—independent C+-+ source code may be compiled on either UNIX or
Windows environments to produce dnaGeoid and geoid binaries. Microsoft C++ and GCC
compilers have been used to build and test these products. Where grid file interpolation is
required in a Web services environment, either dnaGeoid or geoid may be called. It is anticipated
that developers of proprietary software products will prefer to statically link dnaGeoid at compile
time, however the option for dynamic linking is also provided.

GeoidInt has been developed for users who require an interactive, Windwos—based approach
to geoid interpolation. Unlike dnaGeoid and geoid, GeoidInt has been specifically written for
Microsoft Windows environments using Visual C++ and the Microsoft Foundation Class (MFC)
library.

=g [H) [

Standard C++/STL

snurce code

H = [H]

P

source_cpp Source_h source_cpp Ssource_h source_cpp Ssource_h
1 UNIX/Linux I Windows
e GCC = MinGW({GCC) W‘ Microsoft C++
Q . Q . or '|E il
| compiler r_| compiler compiler
i il
1 A
Shared Linux Win32 DLL Win32 EXE
library (shell app) (console app)
libdnaGeoid.so dnaGeoidint dnaGeoid.dll dnaGeoidint.exe

N ‘

K

LY

JSP / Servlet engine

Server extensions

Web server

A

A

=
" Win32 EXE

{Windows app)
Geoidlnt.exe

Internet

Y
Web client (i.e. HTML page)

. -]
MS Visual C++ source 7 _ 7
source_h Source_cpp

Figure 1.1: Geoid Interpolation Technical Architecture

2 dnaGeoid Library

2.1 Data struct type declarations

Various data structs have been declared to group common data elements used by dnaGeoid.
The following is a description of these data structs.

typedef struct interpolant

interpolant is used to hold the coordinates and height for user specified interpolants, trans-
formed heights and the status of geoid interpolations.
typedef struct {
double dLatitude;
double dLongitude;
double dHeight;
int iDatum;
int iHeightSystem;
int I0_Status;
} interpolant;

dLatitude double precision variable to store interpolant latitude in decimal degrees. Must be
negative for southern hemisphere.

dLongitude double precision variable to store interpolant longitude in decimal degrees.
dHeight double precision variable to store interpolant height in metres.

iDatum integer variable used to store user—defined datum for the interpolant coordinates.
iHeightSystem integer variable used to specify whether height is orthometric or ellipsoidal.

I0_Status integer variable used to hold the numeric switch for determining success or failure
and type of failure of an interpolation call.

typedef struct geoid_values

geoid_values is used to hold the interpolated values from the geoid grid file.

typedef struct {
double dN_value;
double dDefl_meridian;
double dDefl_primev;

} geoid_values;

dN_value double precision variable to store interpolated ellipsoid—geoid separation (N) value.
dDefl_meridian double precision variable to store interpolated deflection of the vertical in the
prime meridian.

dDefl_primev double precision variable to store interpolated deflection of the vertical in the
prime vertical.

typedef struct _geoid_point

_geoid_point is defined to group the interpolant and interpolated values in a single variable.

typedef struct {
interpolant cVar;
geoid_values gVar;
} _geoid_point;

cVar variable to store interpolant values (see interpolant).

gVar variable to store interpolated values (see geoid_values).

2.2 Exported functions

To cater for the various geoid interpolation requirements, dnaGeoid exports the following func-
tions:

BiCubicTransformation Interpolates geoid values using bi—cubic interpolation

BiLinearTransformation Interpolates geoid values using bi-linear interpolation

CreateGridIndex Opens an NTv2 geoid grid file and loads the header information
into memory

CreateNTv2File Creates a NTv2 geoid grid file from the legacy WINTER DAT
file format

FileTransformation Interpolates geoid values for a file of points using either
bi-linear or bi—cubic interpolation

GetByteOffset Gets the current position in (or byte offset from the beginning
of) a file that is being processed.

ReportGridProperties Retrieves the geoid grid file header information

ReturnFileProgress Returns the progress of the file conversion /transformation
process as a percentage

SetByteOffset Initialises the byte offset to zero

Version Retrieves the version of the library

Explanation of these functions, including sample ANSI C/C++ code showing how to call each
function is provided in §2.4.

2.3 Handling exceptions

For the errors that are known to occur during the run—time life of dnaGeoid, an exception
handler based on the C++ Standard library has been developed. The exception handler is
called NetGeoidException and provides an ability to react intelligently to well known errors.
Given that logical /run-time errors can originate from a source external to dnaGeoid, it is rec-
ommended that a catch statement be provided for other known error types such as exception,
runtime_error and out_of_range. Figure 2.1 shows an example of handling NetGeoidException
and runtime_error references thrown by dnaGeoid.

try {
// DynaNetGeoidInt method called here
}
catch (NetGeoidException& e) {
// handle error
}
catch (runtime_error& e) {
// handle error

3

Figure 2.1: Exception handling example

2.4 Calling the exported functions

2.4.1 BiCubicTransformation

Declaration void BiCubicTransformation(_geoid_point* apPoint);

Once CreateGridIndex (see §2.4.3) has been called to open a geoid grid file, BiCubicTrans-
formation can be called at random to interpolate N values using bi—cubic interpolation, and
to apply the interpolated value to the supplied height according to the direction specified by
iHeightSystem (see _geoid_point in §2.1).

BiCubicTransformation takes one argument — a pointer to an _geoid_point object (see §2.1 for
an explanation of the members). The function is a void function and throws NetGeoidException
upon failure. See §2.3 for a full description on the types of exceptions that can be thrown.

Using ANSI C/C++, below is an example of calling BiCubicTransformation to interpolate an
N value for a point and to compute an orthometric height.

_geoid_point gPt;

gPt.cVar.dLatitude = -17.489296814;

gPt.cVar.dLongitude = 140.833946983;

gPt.cVar.dHeight = 55.960;

gPt.cVar.iHeightSystem = 1; // current system is ellipsoidal
gPt.cVar.I0O_Status = ERR_TRANS_SUCCESS;

DynaNetGeoidInt g;
try {
g.BiCubicTransformation (&gPt, 1);

}
catch (NetGeoidException& e) {
cout << "Error: " << e.what() << endl;

}

if (gPt.cVar.IO_Status != ERR_TRANS_SUCCESS)
return false;

cout << "N value = " << gPt.gVar.dN_value << endl;

2.4.2 BiLinearTransformation

Declaration void BilinearTransformation(_geoid_point* apPoint) ;

Once CreateGridIndex (see §2.4.3) has been called to open a geoid grid file, BiLinearTrans-
formation can be called at random to interpolate N values using bi-linear interpolation, and
to apply the interpolated value to the supplied height according to the direction specified by
iHeightSystem (see _geoid_point in §2.1).

BiLinearTransformation takes one argument — a pointer to an _geoid_point object (see §2.1 for
an explanation of the members). The function is a void function and throws NetGeoidException
upon failure.

Using ANSI C/C++, below is an example of calling BiLinearTransformation to interpolate an
N value for a point and to compute an ellipsoidal height.

_geoid_point gPt;

gPt.cVar.dLatitude = -17.489296814;

gPt.cVar.dLongitude = 140.833946983;

gPt.cVar.dHeight = 4.254;

gPt.cVar.iHeightSystem = 0; // current system is orthometric
gPt.cVar.I0O_Status = ERR_TRANS_SUCCESS;

DynaNetGeoidInt g;
try {
g.BilinearTransformation (&gPt, 1);

}
catch (NetGeoidException& e) A
cout << "Error: " << e.what() << endl;

}

if (gPt.cVar.IO_Status != ERR_TRANS_SUCCESS)
return false;

cout << "N value = " << gPt.gVar.dN_value << endl;

2.4.3 CreateGridlndex

Declaration void CreateGridIndex(const char* fileName, const char* fileType);

Integral to interpolating from an N'Tv2 geoid grid file, an array of the overview header blocks
for each sub grid must be built up in virtual memory. CreateGridIndex can be called to
open a geoid grid file and build this array. The array is built each time when a new file
name or file type is passed, and checks are made to determine the integrity of the entire
grid file. Note that the entire grid file is not loaded, rather, only the header blocks. Thus,
the performance of CreateGridIndex and BilinearTransformation/BiCubicTransformation is
completely unaffected by the size of the grid file.

CreateGridIndex takes two arguments — the full file path of the grid file as a char array and
the grid file type as a char array (maximum of 3 characters). The function is a void function
and throws NetGeoidException upon failure.

The gridfile header block information is retained in memory until the library or object is
unloaded, or the destructor is called when a DynaNetGeoidInt object goes out of scope. Hence,
this method only needs to be called once for the lifetime of the use of the library.

Below is an example of calling CreateGridIndex to open a binary grid file using ANSI C/C++.

10

char gridfilePath[401], gridfileType [4];
strcpy(gridfilePath, "/opt/geoid/ausgeoid09.gsb");
strcpy(gridfileType, "gsb");

DynaNetGeoidInt g;
try {
g.CreateGridIndex (gridfilePath, gridfileType);

}
catch (NetGeoidException& e) A
cout << "Error: " << e.what() << endl;
return false;
}
cout << endl << "Grid file:\mn " << gridfilePath <<

endl << "successfully opened." << endl;

2.4.4 CreateNTv2File

Declaration void CreateNTv2File(const char* datFile, const n_file_par* grid,
const n_gridfileindex* subgrid);

CreateNTv2File can be called to create a binary geoid grid file in the NTv2 file format from
a legacy WINTER dat file. CreateNTv2File takes three arguments — the full file path of
the WINTER dat file as a char array, a pointer to a n_file_par object and a pointer to a
n_gridfileindex object. The function is a void function and throws NetGeoidException upon
failure.

CreateNTv2File uses the members in n_file_par and n_gridfileindex (see §2.1) to initialise
the general parameters of the new grid file. Upon reading the contents of the WINTER dat file,
CreateNTv2File sets the geometrical parameters for the grid file. These parameters include:

e The grid’s upper, lower, western and eastern limits (see dSlat, dNlat, dElong and dWlong)
e The grid’s north/south and east/west grid node separation (see dLatinc and dLonginc)
e The total number of nodes within the grid (see 1Gscount)

Hence, values written to these variables prior to calling CreateNTv2File will be overwritten
during the creation process.

Below is an example of calling CreateNTv2File using ANSI C/C++.

char winterfilePath[401];

strcpy(winterfilePath, "/opt/geoid/ausgeoid09.dat");
n_file_par ntv2;

n_gridfileindex subgrid;

// set parameters for new ntv2 grid file
strcpy(ntv2.filename, "/opt/geoid/ausgeoid09.gsb");
strcpy(ntv2.chGs_type, "SECONDS");
strcpy(ntv2.chVersion, "1.0.0.0");

strcpy (ntv2.chSystem_f, "GDA94 ")

strcpy (ntv2.chSystem_t, "AHD_1971");

ntv2.daf = 6378137.; // semi-major of ‘from’ system
ntv2.dat = 6378137.; // semi-major of ‘to’ system
ntv2.dbf = 6356752.314; // semi-minor of ‘from’ system

11

ntv2.dbt = 6356752.314; // semi-minor of ‘to’ system

// set parameters for the subgrid

strcpy (subgrid.chSubname, "AUSGEQOID");
strcpy (subgrid.chCreated, "18032010");
strcpy (subgrid.chUpdated, "18032010");

DynaNetGeoidInt g;
try {
g.CreateNTv2File (winterfilePath, &ntv2, &subgrid);

}

catch (NetGeoidException& e) A
cout << endl << "Error: " << e.what() << endl;
return false;

}

cout << endl << "Grid file:\n " << gridfilePath <<

endl << "successfully created." << endl;

Users wishing to track the progress of the NTv2 file creation should consider calling Create-
NTv2File from a separate process (or thread) and then calling GetByteOffset (see §2.4.6) or
ReturnFileProgress (see §2.4.8).

2.4.5 FileTransformation

Declaration void FileTransformation(const char* fileIn, const char* fileOut,
const int& method, const int& intEllipsoidtoOrtho, const inté&
intDmsFlag) ;

Users should call FileTransformation to transform a file of coordinates on one height system to
another using bi-linear or bi—cubic interpolation. FileTransformation takes five arguments —
the path to the coordinate input file, the path to the coordinate output file, a flag representing
the interpolation method, a flag representing the height transformation direction, and a flag rep-
resenting the format of the input coordinates. The interpolation method used will be bi-linear
when method equals 0 (zero) and bi—cubic when method equals 1 (one). If intEllipsoidtoOrtho
equals 1 (one), then the input height is assumed to be an ellipsoidal height and an orthome-
tric height is written to the output file. The opposite is assumed when intEllipsoidtoOrtho
equals 0 (zero). If intDmsFlag equals 0 (zero), then the input coordinates are assumed to be
in degrees, minutes and seconds format (ddd.mmssss). If intDmsFlag equals 1 (one), decimal
degrees format (dd.dddd) is assumed.

FileTransformation is a void function, and throws NetGeoidException upon failure. Typical
exception examples include the cases when a point lies outside the grid file extents, and when
the input file or output file cannot be opened for reading and writing respectively. See §2.3 for
a full description on the types of exceptions that can be thrown.

FileTransformation uses the file extension of the input file to determine what type of file is
to be read. FileTransformation supports two file types — formatted text files and comma
separated values files. See §5 for details on the file format specification for these file types.

Once FileTransformation has interpolated the N value from the specified grid file, the height
supplied on each line is transformed using intEl1lipsoidtoOrtho to indicate the transformation
direction. To obtain the N value for each point in the file, leave the height field blank. If
available, deflections in prime meridian and prime vertical will be printed after the height

12

field. If a point lies outside the grid file, then the output height is set to —999.999. Since
FileTransformation is only concerned with heights, the input latitude and longitude are written
directly to the output file without any alteration.

Using ANSI C/C++, below is an example of how to call FileTransformation to transform a
formatted text file of orthometric heights to ellipsoidal heights using bi—cubic interpolation.

char infileName[401], outfileName[401];
strcpy(infileName, "/home/guest/data/orthometric.txt");
strcpy(outfileName, "/home/guest/data/ellipsoidal.txt");

DynaNetGeoidInt g;

try {
FileTransformation(infileName, outfileName, 0, 0, 1);
}
catch (NetGeoidException& e) {
cout << "Error: " << e.what() << endl;
}

Users wishing to track the progress of the file transformation should consider calling File-
Transformation from a separate process (or thread) and then calling GetByteOffset (see §2.4.6)
or ReturnFileProgress (see §2.4.8).

2.4.6 GetByteOffset

Declaration const inline long GetByteOffset();

During calls to FileTransform or CreateNTv2File, the byte offset of the input file pointer from
the beginning of the file is updated each time a new record is read from the input file. Hence,
the byte offset can be used to track the progress of an individual file transformation or NTv2
file creation. GetByteOffset can be called to retrieve the value held by the global byte offset
variable.

GetByteOffset returns a long value, and can be called at any time while a file is being pro-
cessed, or after a call made to FileTransformation or CreateNTv2File has returned. Thus, if an
exception is thrown, the last point at which data was read from the file can be quickly accessed.
If several files are to be transformed, GetByteOffset can be used to increment a total progress
counter if the sum of all file sizes is known. See §2.4.9 for notes on initialising the byte offset.

Below is some pseudocode showing an example of calling GetByteOffset.

DynaNetGeoidInt g;
long 1ByteOffset (0);

// open a grid file using CreateGridIndex
// begin a new worker thread to transform a file

// while worker thread is alive {
// track the position in the file
1ByteOffset = g.GetByteOffset ();

13

// wait
this_thread::sleep (500); // using boost
/73

2.4.7 ReportGridProperties

Declaration void ReportGridProperties(const char* fileName, const charx
fileType, n_file_par* gridProperties);

ReportGridProperties can be called to retrieve all header block array information for a par-
ticular grid file. Hence, the general and geometrical parameters of a particular grid file can
be assessed without overriding the currently opened file. ReportGridProperties takes three
arguments — the full file path of the grid file as a char array, the grid file type as a char
array (maximum of 3 characters) and a pointer to a n_file_par object (see §2.1 for details).
ReportGridProperties is a void function and throws NetGeoidException upon failure.

Below is an example of calling ReportGridProperties using ANSI C/C++.

char gridfilePath[401], gridfileType [4];
strcpy(gridfilePath, "/opt/geoid/ausgeoid09.gsb");
strcpy(gridfileType, "gsb");

n_file_par ntv2;

DynaNetGeoidInt g;
try {
g.ReportGridProperties (gridfilePath, gridfileType, &ntv2);

}
catch (NetGeoidException& e) {

cout << "Error: " << e.what() << endl;

return false;
}
cout << endl << "Grid properties for \"" << gridfilePath << "\":" << endl;
cout << "+ GS_TYPE = " << ntv2.chGs_type << endl;
cout << "+ VERSION = " << ntv2.chVersion << endl;
cout << "+ NUM_OREC = " << ntv2.iH_info << endl;
cout << "+ NUM_SREC = " << ntv2.iSubH_info << endl;
cout << "+ NUM_FILE = " << ntv2.iNumsubgrids << endl;

// number of subgrids in file (NUM_FILE)
for (int i1=0; i<ntv2.iNumsubgrids; ++1)

{
cout << " + SUBGRID " << i << ":" << endl;
cout << " SUB_NAME = " << ntv2.ptrIndex[i].chSubname << endl;
cout << " PARENT = " << ntv2.ptrIndex[i].chParent << endl;
cout << " CREATED = " << ntv2.ptrIndex[i].chCreated << endl;
cout << " UPDATED = " << ntv2.ptrIndex[i].chUpdated << endl;
cout << " S_LAT = " << ntv2.ptrIndex[i].dSlat << endl;
cout << " N_LAT = " << ntv2.ptrIndex[i].dNlat << endl;
cout << " E_LONG = " << ntv2.ptrIndex[i].dElong << endl;
cout << " W_LONG = " << ntv2.ptrIndex[i].dWlong << endl;
cout << " LAT_INC = " << ntv2.ptrIndex[i].dLatinc << endl;
cout << " LONG_INC = " << ntv2.ptrIndex[i].dLonginc << endl;
cout << " GS_COUNT = " << ntv2.ptrIndex[i].1lGscount << endl;

}

14

2.4.8 ReturnFileProgress

Declaration const inline int ReturnFileProgress();

Like GetByteOffset, ReturnFileProgress can be called to track the progress of an individual file
transformation or N'Tv2 file creation. The return value of ReturnFileProgress is a percentage
of the byte offset in relation to the total size of the file being processed.

ReturnFileProgress returns an integer value, and can be called at any time while a file is being
processed, or after a call made to FileTransformation or CreateNTv2File has returned. As with
GetByteOffset, a separate thread can be used to monitor progress.

Using ANSIT C/C++, below is an example of calling ReturnFileProgress.

DynaNetGeoidInt g;
int fileProgress = g.ReturnFileProgress();

2.4.9 SetByteOffset

Declaration inline void SetByteOffset();

SetByteOffset initialises the global byte offset variable to zero (see §2.4.6 for an explanation
of the variable’s purpose). Whilst the global byte offset is initialised each time a call is made
to FileTransform, SetByteOffset is provided to enable users to initialise the offset after a file
has been transformed. It is not mandatory to call SetByteOffset but should be used if other
processes are dependent upon the value of GetByteOffset prior to calling FileTransform.

Using ANSIT C/C++, below is an example of calling SetByteOffset.

DynaNetGeoidInt g;
g.SetByteOffset ();

2.4.10 Version

Declaration static void Version(char* version);

Version can be called to obtain the current version of dnaGeoid. Version is a static member
function and can be called without instantiating the DynaNetGeoidInt class. Below is an example
of calling Version using ANSI C/C+-+.

char dnageoid_version[401];
DynaNetGeoidInt::Version(dnageoid_version);

cout << "Version: << dnageoid_version << endl;

The following is the output from the current version of dnaGeoid.

S
+ Title: geoid

+ Description: Geoid Grid File (NTv2) Interpolation software.

+ Version: 1.0.3.0, Release

+ Build: Dec 7 2011, 11:30:20 (MSVC++ 9.0)

15

+ Copyright: (C) 2010 ICSM GTSC.
This is free software released under a restricted license.

+ Contact: nicholas.brown@ga.gov.au
+ +61 2 6249 9831
S

16

3 Command-line software: geoid

geoid has been developed to simplify the use of the dnaGeoid library. Whether compiled for
Windows or UNIX/Linux, geoid is a console application that can be accessed from the DOS
prompt or UNIX/Linux shell. geoid may also be called from other applications using the
standard syntax for calling system commands. To run geoid, simply type geoid on the command
line with the required arguments. The command line usage and arguments are as follows.
Default options are provided in parentheses.

Usage

geoid [standard options] [NTv2 options] [interpolation|file options]

Standard options

-i [--interpolate] Interpolate geoid information from command-line input
coordinates.
-f [--file-interpolate] Interpolate geoid information from a file of coordinates.

-m [--interpolation-method] arg Interpolation method:
0 = Bi-linear
1 = Bi-cubic (default)

--decimal-degrees Specify input coordinates in decimal degrees. Default is
degrees, minutes and seconds.

-¢ [--create-ntv2] Create NTv2 grid file from standard DAT file.

-n [--ntv2-filepath] arg File path of the NTv2 grid file.

-s [--summary] Print a summary of the grid file.

-h [--help] Show this help message

NTv2 options
-d [--dat-filepath] arg File path of the DAT grid file. If --create-ntv2 is
supplied, this argument is mandatory. All following
arguments are optional.

--GS_TYPE arg (=SECONDS) Grid shift type (seconds or radians).
--VERSION arg (=1.0.0.0) Grid file version.
--SYSTEM_F arg (=GDA94) "From’ reference system.
--SYSTEM_T arg (=AHD_1971) "To’ reference system.
--MAJOR_F arg (=6378137.000) Semi major of ’From’ system
--MAJOR_T arg (=6378137.000) Semi major of "To’ system
--MINOR_F arg (=6356752.314) Semi minor of 'From’ system
--MINOR_T arg (=6356752.314) Semi minor of "To’ system
--SUB_NAME arg (=AUSGEQID) name of subgrid.

--CREATED arg (=01012010) Date of creation.

--UPDATED arg (=01012010) Date of last file update.

17

Interpolation options

Both -p and -1 arguments are mandatory if --interpolate is supplied. Specify --decimal-degrees
if input coordinates are in decimal degrees format.

-p [--latitude] arg Latitude of the interpolant. Default in degrees, minutes and
seconds.

-1 [--longitude] arg Longitude of the interpolant. Default in degrees, minutes and
seconds.

File interpolation options

-t [--input-file] arg ASCII text file path of the input coordinates and height.
This argument is mandatory if --file-interpolate is
supplied. --direction is optional. Specify
--decimal-degrees if input coordinates are in decimal
degrees format.

-r [--direction] arg Conversion of heights (if supplied):

0 = Orthometric to ellispoid
1 = Ellispoid to orthometric (default)

-s [--bin-stn-file] arg Binary station filename. If extant, populates all records
within the binary station file with N value and deflections
of the vertical.

--convert=stn-hts If a user—supplied height in the binary file is
orthometric, the height is converted to ellipsoidal.

Example Usage
To create a new NTv2 AusGeoid file using the default options, run:
geoid -c -n ./ausgeoid09.gsb -d ./ausgeoid09.txt

To create a new NTv2 AusGeoid file based upon GDA94, with a creation/updated date of 18
March 2010, using all other default options, run:

geoid -c¢ -n ./ausgeoid09.gsb -d ./ausgeoid09.txt --SYSTEM_F GDA94 --CREATED 18032010
--UPDATED 18032010

To interpolate a single N value and corresponding deflections of the vertical for a point located
at —38.93875308° latitude (phi, ¢) and 145.53129736° longitude (lambda,), run:

geoid -i -n ./ausgeo0id09.gsb -p -38.93875308 -1 145.53129736 --decimal-degrees

To interpolate a list of N values and corresponding deflections of the vertical for a list of points
(defined by latitudes and longitudes) stored within a text file “data.txt”, run:

geoid -f -n ./ausgeoid09.gsb -t /home/guest/geoid_data/data.txt

With this sequence of arguments, geoid will create a text file named “data_out.txt”. This file
will contain the original list of latitudes and longitudes. If heights were supplied in the input file,
the output heights will be either ellipsoidal height or orthometric height, the determination of
which is based upon the argument --direction. During the process, N values are interpolated
for each point and the output height is computed using the following formula:

H = h—N
h = H+N

18

where H is orthometric height and & is ellipsoidal height.

When supplying a text file using --file-interpolate and --input-file arguments, the user
may supply a formatted text file or a comma separated values file. The required format of each
line supplied in formatted text files and comma separated values files is shown in §5.

19

4 Graphical User Interface software: GeoidInt

As discussed earlier, GeoidInt provides an interactive approach to geoid grid file interpolation.
Figure 4.1 shows the main GeoidInt dialog. At the top-left of the dialog is the main menu.
Figure 4.2 shows the items contained in the File menu. This menu can be used to select the
default geoid grid file, create a NTv2 geoid grid file from a WINTER dat file, and interpolate
geoid grid values for a single point. The About menu displays a simple dialog which shows
information about Geoidlnt. The remaining control items on the main dialog offer the same
functionality provided in the File menu, and some additional controls for interpolating geoid
values for a file of points.

x

File About

—MTv2 AusGeoid Grid
| U: \GEODESY \HEIGHTING \AusGeoid \ALSGeoid09_GD:
—Interpolate points file
| Select file |
Direction Farmat B i
" Elipsoidal (1) to AHD {H) ¥ d.mmzsss &l
™ AHD (H) to Ellipscidal (h) " d.dddddd
Interpolate point iew Log |

Press 'Select file' or 'Interpolate point’ to start

Figure 4.1: Main dialog

Create AusGeoid (NTvZ) grid file

Select AusGeoid (NTv2) grid file

Interpolate point

Exit

Figure 4.2: File menu

4.1 Interpolating geoid values for a single point

To retrieve the N value, deflection in the prime meridian and deflection in the prime vertical
for a single point, either click the Interpolate point button from the main dialog or Interpolate

21

point from the File menu. Figure 4.3 shows the Interpolate point dialog that is displayed.
Using this dialog, choose the desired format for the input coordinates. The two options are
degrees, minutes and seconds, and decimal degrees. Enter the coordinates into the Latitude
and Longitude edit boxes using numerical digits only with no spaces. A minus sign is required
for latitudes in the southern hemisphere (as shown in Figure 4.3) or longitudes west of the
zero meridian. Upon leaving the input Latitude and Longitude edit boxes, the input values
will be formatted according to the chosen coordinate format. Finally, click Interpolate. The
interpolated values will appear in the Output values and Astronomical coordinates group boxes

on the right.

Interpolate Point x|

—Input (geodetic) coordinates —Qutput values

Latitude: 37.592542627 M value: I 3.488
Longitude: IE 1447 17 74,0656 1 Dfl. Prime Meridian:l 2,971
% d.mmssss " d.dddddd Dfl. Prime Vertical: I 0.593

Height (h): | a Height (H): | -3.433

' Elipsoidal (h) to AHD {H) — Astronomical coordinates
" AHD (H) to Ellipsoidal ()

Latitude: IS 370 59" 35.39760"

Interpolate Longitude: IE 144% 17 74.68919"

Figure 4.3: Interpolate dialog

To transform a height between the ellipsoidal and orthometric height systems, simply select
the desired direction from the Ellipsoid (h) / AHD (H) radio buttons on the left, enter in the
appropriate height and then click Interpolate. A height is not compulsory for interpolating from
the grid file. If the output deflection values equal zero, then no data is available for that point.
Each time Interpolate is clicked, the interpolant coordinates together with the interpolated
values are printed to a log file. To view the log file, click View log from the main dialog.

If the interpolant lies outside the limits of the geoid grid file, the error message shown in Figure
4.4 will be displayed.

Interpolation Error x|

L] E The paint lies outside the extents of the distortion grid.
L

Figure 4.4: Interpolation error message — point outside the grid file limits

22

4.2 Interpolating geoid values for a file of points

To retrieve the N value for a list of points contained within a file:

1.

2.

Click the Select file button from the main dialog
From the Look in box, select the drive or folder that contains the input file.
In the Files of type box, choose the appropriate input file-type!

In the folder list, double—click folders until the folder that contains the required file is
opened.

Double—click the required input file.

If a file of Ellipsoidal heights is to be transformed to a file of AHD heights, select the
Elllipsoid (h) to AHD (H) radio button from the main dialog.

Click the Process file button.

Upon transforming a points file, the output file name will be the same as the input file name
with a “ out” inserted between the file name and the file extension.

During the transformation process, the height supplied on each line is transformed according to
the transformation direction. To obtain the N value for each point in the file, leave the height
field blank. If available, deflections in prime meridian and prime vertical will be printed after
the height field. If a point lies outside the grid file, then the output height is set to —999.999.
Since GeoidInt is only concerned with heights, the input latitude and longitude are written
directly to the output file without any alteration. The interpolation method used in the file
transformation is bi—cubic by default and cannot be changed.

!The available types include Formatted Text (*.dat, *.prn, *.txt) and Comma Separated Files (*.csv) files
formatted according to the specifications outlined in Chapter 5.

23

5 File Format Specification

GeoidInt supports Formatted Text files (e.g. *.dat, *.prn, *.txt) and Comma Separated Values files
(*.csv). GeoidInt expects all input coordinates in both file formats to be geographic coordinates
in degrees, minutes and seconds unless otherwise specified. In this form, the latitude and
longitude fields should each contain only one numeric value. When working with formatted text
files, the maximum number of significant digits the values can have is 15 significant figures®.
For latitudes in the southern hemisphere and longitudes west of the zero meridian, the number

of significant figures is further reduced by 1 to cater for the minus sign.

Formatted text files

Every line in a formatted text file must contain data fields in particular file positions (or
columns). Certain fields may be omitted depending on what they are. Table 5.1 lists the
compulsory and non-compulsory fields in the required order. Figure 5.1 shows an example
formatted text file and illustrates the use of the non-compulsory fields. Column numbers
shown for reference only.

Field Columns Characters Compulsory?
Point ID 1-11 11 No
Latitude 12 -27 16 Yes
Longitude 28 — 43 16 Yes
Height 44 — 52 9 No

Table 5.1: Formatted text file fields

123456789012345678901234567890123456789012345678901234567890

—————————— D e e S A P S

Point (11) Latitude (16) Longitude (16) Hght (9)

MT HIGH -27.498408428 1563.001072611
-27.498421786 150.001124192
-29.086179181 151.966654878
-29.073486997 151.805272886 4.23

62 / 54 -29.000294436 151.457723186

GBM16 -28.636707072 1561.970252700

GBM34 -28.619868617 151.650131492
-28.235994419 151.990397797 36.281

Figure 5.1: Example formatted text file

Since the maximum field width for both latitude and longitude is 16 characters, excluding the decimal point
leaves a maximum of 15 characters.

25

Comma separated values files

Every line in a CSV file must contain data fields separated by commas. Non-compulsory fields
may be empty, however a sufficient number of commas must be present to delineate the presence
of compulsory fields. Table 5.2 lists the compulsory and non-compulsory fields in the required
order.

Field Compulsory?
Point 1D No
Latitude Yes
Longitude Yes
Height No

Table 5.2: Comma separated values file fields

According to Table 5.2, a minimum of two commas is sufficient to delineate Point ID, Latitude
and Longitude. Figure 5.2 shows an example CSV file. Note that a header line is not required.

MT HIGH,-10.498408428,153.001072611
,-20.498421786,140.001124192
,-40.086179181,121.966654878,

1596-4 , -37.593644101, 144.204321339
1596-5 s -37.593616320, 144.204318245
62 / 54,-40.000294436,141.457723186, 4.23
GBM16 ,-30.636707072,151.970252700,
GBM34,-20.619868617,141.650131492
4,-20.235994419,121.99039779,36.281

Figure 5.2: Example comma separated values file

The simplest way to create a CSV file is to use a spreadsheet program such as Microsoft Excel
or OpenOffice Calc. To create a CSV file using a spreadsheet program, perform the following:

Create a new spreadsheet

If available, enter in the unique identifier for each point in column A.

Enter in values for latitude and longitude in columns B and C.

Enter in a height in column D. Leave this column blank if geoid values are required.
Click Save As... from the File menu

In the Save as type box, click CSV (Comma delimited) (*.csv).

Click Save.

NS Tt W=

As an example, Figure 5.3 shows two records for a CSV file (to be created) in decimal degrees
using Microsoft Excel.

26

Microsoft Excel - Bookl
@_] Fle Edit Wew Insert Format Tools Data Window Help

NEHRISQAIVE & L@-F | 9-™- |8

: Calibri -3 - B I U ESEEZ=EHHS$ %
D2 - £ 16.223
A B | ¢ | b | e | F | =6
1 1| -27.4284| 153.0011 13.025
g 3 288484 151.1511] 15.229_|
| 4 |
=N
| & |
| 7
| 8 |
| 2
10

Figure 5.3: Using Excel to create a CSV file in decimal degrees

27

	Contents
	Preface
	1 Introduction
	2 dnaGeoid Library
	2.1 Data struct type declarations
	2.2 Exported functions
	2.3 Handling exceptions
	2.4 Calling the exported functions
	2.4.1 BiCubicTransformation
	2.4.2 BiLinearTransformation
	2.4.3 CreateGridIndex
	2.4.4 CreateNTv2File
	2.4.5 FileTransformation
	2.4.6 GetByteOffset
	2.4.7 ReportGridProperties
	2.4.8 ReturnFileProgress
	2.4.9 SetByteOffset
	2.4.10 Version

	3 Command–line software: geoid
	4 Graphical User Interface software: GeoidInt
	4.1 Interpolating geoid values for a single point
	4.2 Interpolating geoid values for a file of points

	5 File Format Specification

